DPP - 2 (Waves)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/92
Video Solution on YouTube:- https://youtu.be/9-tISf-f7Kk

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/38
Q 1. A heavy uniform rope is suspended from a rigid support. A wave pulse is set up at the upper end, then
(a) the pulse will travel with uniform speed
(b) the pulse will travel with increasing speed
(c) the pulse will travel with decreasing speed
(d) the pulse cannot travel through the rope

Q 2. A transverse wave described by $y=(0.02 \mathrm{~m}) \sin \left[\left(1.0 m^{-1}\right) \mathrm{x}+\left(30 \mathrm{~s}^{-1}\right) \mathrm{t}\right]$ propagates on a stretched string having a linear mass density of $1.2 \times 10^{-4} \mathrm{~kg} / \mathrm{m}$. Find the tension in the string.
(a) 0.108 N
(b) 1 N
(c) .02 N
(d) 2 N

Q 3. Both the strings, shown in figure are made of same material and have same cross-section. The pulleys are light. The wave speed of a transverse wave in the string AB is V_{1} and in CD it is V_{2}. Then V_{1} / V_{2} is-

(a) 1
(b) 2
(c) $\sqrt{2}$

(d) $1 / \sqrt{2}$

Q 4. A progressive wave on a string having linear mass density ρ is represented by $y=$ $A \sin \left(\frac{2 \pi}{\lambda} x-\omega t\right)$ where y is in mm . Find the total energy (in $\mu \mathrm{J}$) passing through origin from $\mathrm{t}=0$ to $\mathrm{t}=\frac{\pi}{2 \omega}$.
[Take: $\rho=3 \times 10^{-2} \mathrm{~kg} / \mathrm{m}, \mathrm{A}=1 \mathrm{~mm}, \omega=100 \mathrm{rad} / \mathrm{s}, \lambda=16 \mathrm{~cm}$]
(a) 6
(b) 7
(c) 8
(d) 9

Q 5. A uniform ring of radius R is rotating with constant angular speed ω. A transverse pulse is produced on it. Speed of pulse with respect to ring is
(a) $\omega \mathrm{R}$
(b) $\omega \mathrm{R} / 2$
(c) $\omega R / 4$
(d) $\omega R / 3$

Q 6. Power of a transverse wave on string is 10 mW and frequency of wave is 100 Hz . Energy of one wavelength of string is
(a) 1 mJ
(b) 10 mJ
(c) .1 mJ
(d) .01 mJ

Q 7. In a gravity free space, a wire of mass m and length L is rotating with angular velocity ω about an axis perpendicular to rod and passing through its one end. A Transverse pulse is
produced near axis. Retardation of this pulse is R and distance from axis is x then
(a) $\mathrm{R} \propto \sqrt{x}$
(b) $\mathrm{R} \propto x$
(c) $\mathrm{R} \propto x^{3 / 2}$
(d) $\mathrm{R} \propto x^{5 / 2}$

Q 8. One end of string of length L is tied to ceiling of lift accelerating upwards with an acceleration 3 g . The other end of the string is free. The linear mass density of string varies linearly from 0 to μ, from bottom to top. Then correct statement for wave travelling in string (a)Wave speed is increasing as it travels from bottom to top
(b)Acceleration of wave on string is uniform
(c)Time taken by pulse to reach from bottom to top will be $\sqrt{\frac{2 L}{g}}$
(d) All of these

Q 9. A nonuniform rope is hanging vertically. A transverse pulse is produced at its bottom end and it is observed that pulse is moving up with constant velocity. If x is distanee from lower end, then linear mass density of rope is directly proportional to
(a) x
(b) x^{2}
(c) \sqrt{x}
(d) None of these

Q 10. For a transverse wave propagating on string
(a) Kinetic energy per unit length is maximum at mean position
(b) Kinetic energy per unit length is maximum at extreme position
(c) Potential energy per unit length is maximum at mean position
(d) Potential energy per unit length is maximum at mean position

Q 11. At any instant, wave travelling along a string is shown in figure. Here point A is moving

(a) At point A power is transferred by string left to a to string right to A
(b) At point A power is transferred by string right to a to string left to A
(c) Power is zero at A
(d) None of these

Answer Key

Q. 1	c	Q. 2	a	Q. 3	d	Q. 4	a	Q. 5
Q. 6	a							
Q. 11	Q			b	Q. 8	d	Q. 9	d
Q. 10	a,							

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP-2 Waves: Waves on String \& Energy related to Travelling wave
By Physicsaholics Team

Q1) A heavy uniform rope is suspended from a rigid support. A wave pulse is set up at the upper end, then
(a) the pulse will travel with uniform speed
(b) the pulse will travel with increasing speed (c) the pulse will travel with decreasing speed
(d) the pulse cannot traventhrough the rope

Tension is decreasing
$V \infty \sqrt{T}$
\checkmark is der erasing

Q2) A transverse wave described by $\mathrm{y}=(0.02 \mathrm{~m}) \sin \left[\left(10 m^{-1}\right) \mathrm{x}+\left(30 \mathrm{~s}^{-1}\right) \mathrm{t}\right]$ propagates on a stretched string having a linear mass density of 1.2×10^{-4} kg / m. Find the tension in the string.
(a) 0.108 N

$$
V=\sqrt{\frac{T}{a}}=\sqrt{\frac{\omega}{\pi}}
$$

(c) .02 N

(b) 1 N
(d) 2 N

Q3) Both the strings, shown in figure are made of same material and have same cross-section. The pulleys are light. The wave speed of a transverse wave in the string AB is V_{1} and in CD it is V_{2}. Then V_{1} / V_{2} is -

$$
\begin{aligned}
& V_{1}=\sqrt{T / \mu} \\
& V_{2}=\sqrt{\frac{2 T}{h}}
\end{aligned}
$$

(a) 1
(c) $\sqrt{2}$

$$
\cos +1 / 1 / \sqrt{2}
$$

Q4) A progressive wave on a string having linear mass density ρ is represented by $y=A \sin \left(\frac{2 \pi}{\lambda} x-\omega t\right)$ where y is in mm . Find the total energy (in $\mu \mathrm{J}$) passing through origin from $t=0$ to $t=\frac{\pi}{2 \omega}$.
[Take: $\rho=3 \times 10^{-2} \mathrm{~kg} / \mathrm{m}, \mathrm{A}=1 \mathrm{~mm}, \omega=100 \mathrm{rad} / \mathrm{s}, \lambda=16 \mathrm{~cm}$]

$$
V=\frac{\omega}{K}=\frac{100 x \cdot 16}{2 \pi}=8 / \pi
$$

(a) 6
(c) 8
(b) 7
(d) 9

Energy Barsseld through origin

$$
=\frac{s \gamma}{k} \times \frac{\pi}{2 y}=\frac{\pi}{2} \times \frac{\lambda}{2 \pi}=\frac{\lambda}{4}
$$

$$
\begin{aligned}
& =\frac{F A^{2} b^{2}}{2 V^{2}} \times\left(1+\frac{2}{H^{2}} \times x^{2} \times \frac{54}{\pi^{2}}\right. \\
& =6 \times 10^{-6} \mathrm{~J}=6 \mathrm{~m} \mathrm{~J}
\end{aligned}
$$

Q5) A uniform ring of radius R is rotating with constant angular speed ω. A transverse pulse is produced on it. Speed of pulse with respect to ring is

$$
\begin{aligned}
& \begin{array}{l}
\text { velocity of pulse w.r.tring } \\
=\sqrt{\frac{T}{h}-\text { lass per unit length. }}
\end{array} \\
& \Rightarrow R 2
\end{aligned}
$$

(a) ωR

(d) $\omega R / 3$

Q6) Power of a transverse wave on string is 10 mW and frequency of wave is 100 Hz . Energy of one wavelength of string is

(a) 1 mJ
(b) 10 mJ
(e). $1 . \mathrm{mJ}$
(d) .01 mJ

Time taken by crave to move through 0
$=T=\frac{11}{f}=10^{2} S_{e}$

$$
\begin{aligned}
\text { of 1 Wavelength }=P_{a v} \cdot T & =10 \times 10^{-3} \times 10^{-2} \\
= & 10^{-4} \mathrm{~J}=.1 \mathrm{~mJ}
\end{aligned}
$$

Q7) In a gravity free space a wire of mass m and length Lis rotating with angular velocity ω about an axis perpendicular to rod and passing through its one end. A Transverse pulse is produced near axis. Retardation of this pulse is R and distance from axis is x then

(a) $R \propto \sqrt{x}$

Tension at $x=x$
(c) $\mathrm{R} \propto x^{3 / 2}$
(d) $\mathrm{R} \propto x^{5 / 2}$

$$
\begin{aligned}
& \mu V^{2}=\frac{\hbar h}{2 \psi}\left(L^{2}-x^{2}\right) \omega^{2} \\
& 2 V \frac{d V}{d x}=-\frac{1}{2} \times 2 x a^{2} \\
& R=\frac{a^{2} x}{2}
\end{aligned}
$$

Q8) One end of string of length L is tied to ceiling of lift accelerating upwards with an acceleration 3 g . The other end of the string is free The linear mass density of string varies linearly from 0 to μ, from bottom to top. Then correct statement for wave travelling in string
linear mass density $\frac{b=}{x^{x}} \frac{\mu}{L}$

$$
\text { tension at } x=x, T=\int h d x g_{n f}=\frac{\mu g_{1}}{L} \int_{0}^{x} x d x=\frac{\mu g}{2} x^{2}
$$

(a)Wave speed is increasing as it travels frombotton to top
(b)Acceleration of wave on string is uniform

$$
L=\frac{1}{2} \frac{g_{x f t}}{4} \Rightarrow t
$$

(c)Time taken by pulse to reach from bottom to top will be $\sqrt{\frac{2 L}{g}}$
(d)All of these

$$
\begin{aligned}
& \text { Wavesperd af } x=x \\
& V=\sqrt{\frac{\operatorname{mog}_{1 \text { gl }}^{x}}{2 x} \frac{\pi_{1} x}{x}}=\sqrt{\frac{g_{k f} x}{2}} \\
& V^{2}=g_{x+\frac{x}{2}} \Rightarrow 2 V \frac{d v}{d x}=\frac{d / 2}{x} \Rightarrow a=g x_{4}
\end{aligned}
$$

Q9) A nonuniform rope is hanging vertically. A transverse pulse is produced at its bottom end and it is observed that pulse is moving up with constant velocity. If x is distance from lower end, then linear mass density of rope is directly proportional to
(a) x
(c) \sqrt{x}

Q10) For a transverse wave propagating on string

(a) Kinetic energyper unit length is maximumat mean position
(b) Kinetic energy perunit lengthois maximum at extreme position (c) Potential energy per unit length is maximum at mean position
(d) Potential energy per unit length is maximum at mean position

Q11) At any instant, wave travelling along a string is show is moving upwards. Which of following statement is true?

$$
\begin{aligned}
& \text { Power by left portion on } \\
& \text { right portion }=\sqrt{r}=-V_{e} \\
& \Rightarrow \text { right portion is transferring power to left portion. }
\end{aligned}
$$

(a) At point A power is transferred by string left to a to string right to A (b) At point A power is transferred by string right to A to string left to A
(c) Power is zero at A
(d) None of these

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/92

Video Solution on YouTube:-
https://youtu.be/9-tISf-f7Kk

Written Solution on Website:-

Chalo Nikis

